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I. INTRODUCTION

Poincaré emphasized the importance of periodic orbits in
classical mechanics �1�. He devoted a chapter of 70 pages
�chapter 3� of volume 1 of his monumental work New Meth-
ods of Celestial Mechanics �1� to an introduction and study
of them. Poincaré’s fascination with periodic orbits is con-
firmed by Hadamard, who writes that “No subject held his
�Poincaré’s� attention more. One could say that he was pre-
occupied with them all his life.” �1�.

Gutzwiller recognized the importance of periodic orbits to
a quantal treatment of classically chaotic systems �2,3�. Us-
ing only � and classical periodic-orbit information such as
the topology, action, and stability properties of the periodic
orbits �2,3�, he was able to calculate the quantum mechanical
density of states ��E�. For a generic quantum system,
Gutzwiller’s method is not exact. It is a semiclassical theory
expected to improve in the limit �→0.

Though periodic-orbit theory is often associated with ap-
proximate, semiclassical theories, for some systems,
periodic-orbit theory is exact. Examples are a quantized par-
ticle in a space of constant negative curvature �4�, Riemann’s
� function �5�, and quantum graphs �6,7�. In general, exact
periodic-orbit expansions require more than Newtonian peri-
odic orbits. In ray-splitting systems �8–15�, wherein system
properties change rapidly on the scale of the de Broglie
wavelength, an additional class of classical periodic orbits is
found to be important. They are called non-Newtonian orbits
in Ref. �14�.

To illustrate the concept of a non-Newtonian periodic or-
bit consider the motion of a point particle inside of the “step-
in-the-box” potential

Vs�x� = �
� , for x� 0,

0, for 0� x� a ,

V0, for a� x� b ,

� , for x� b ,

�1�

shown in Fig. 1. We shall refer to the various periodic orbits
shown there. According to Newtonian mechanics, a classical
particle with energy E	V0 inside Vs�x� traces out the New-
tonian periodic orbit P1. Quantum mechanically, however,

the particle has a finite probability �r�2 of being reflected at
the potential step with reflection amplitude

r =
�E − �E − V0

�E + �E − V0

. �2�

Note that �, Planck’s constant, does not appear in Eq. �2�
with the consequence that r stays finite in the semiclassical
limit �→0 and even in the classical limit �=0. This obser-
vation is the starting point of the theory of ray splitting
�8–11� and necessitates the introduction and use of a new
nondeterministic, non-Newtonian classical mechanics. More
information on the emergence of this new type of mechanics
can be found in Ref. �15�.

Finiteness of r for �=0 gives rise to the two above-
barrier, non-Newtonian, classical orbits P2 and P3. Both nu-
merical �9,10� and experimental �14� studies have already
confirmed the importance of these two orbits.

For energy E below the barrier V0, Newtonian mechanics
predicts the existence of only the single periodic orbit, P4.

FIG. 1. Types of classical periodic orbits contributing to the
quantum dynamics of a particle in the step-in-the-box potential
Vs�x�. P1: Newtonian orbit bouncing between the infinite-potential
walls L and R; P2, P3: non-Newtonian above-barrier reflection
orbits; P4: Newtonian orbit for E�V0, bouncing between infinite-
potential wall L and the potential step at x=a; P5: ghost orbit with
complex action bouncing between infinite-potential walls L and R;
P6: specter with imaginary action bouncing entirely below the po-
tential barrier V0.
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However, we will show in this paper that to obtain exact
periodic-orbit expansions of quantal energy levels in the
below-barrier, tunneling regime E�V0, the orbits P5 and P6
are equally important. In Newtonian mechanics, these two
orbits do not exist. Though Newtonian mechanics is an in-
ternally consistent theory, by itself it is insufficient for build-
ing exact periodic-orbit expansions. Since part �in the case of
P5� or all �in the case of P6� of the orbit travels under the
potential barrier, these two orbits have complex �P5� or
imaginary �P6� classical actions. Periodic orbits with com-
plex actions are known to be important in atomic physics
�16–18�; they are called ghost orbits in Ref. �19�. Since P6
has imaginary classical action, we call it a “specter.”

Both Newtonian and non-Newtonian ray-splitting orbits
were used in Refs. �20–23� to compute exact periodic-orbit
expansions of individual energy eigenvalues. This is a new
direction in quantum chaos since “traditional” periodic-orbit
expansions �2,3,24� provide the level density ��E�, or the
spectral staircase function N�E�=�E��E��dE�, not individual
energy levels En. One might argue that since ��E� is given by

��E� = 	

=1

�

��E − E
� , �3�

the information about any energy level En must be contained
in ��E�. However, if the task is, for instance, to compute En

for n=106, this can only be done via ��E� by �i� plotting ��E�
and counting the number of peaks in ��E� until one identifies
the 106th peak and reads off its energy value or �ii� by solv-
ing the implicit equation minE
106=N�E��. Generically, this
implicit equation is transcendental and its solution requires
numerical methods. Moreover, before applying a numerical
equation solver, one must run a search algorithm to deter-
mine an energy interval in which En for n=106 is located.
The crucial advance in Refs. �20,21� is the n-targeted com-
putation of En, side-stepping preknowledge of E
 ,

=1,2 , . . . ,n−1, as well as all counting schemes, and numeri-
cal equation solvers, by providing the nth energy level di-
rectly �targeted� by the formula

En = f�n� , �4�

where f is a known function that can be expressed via a
periodic-orbit expansion �20,21�. Thus Eq. �4� is new: a di-
rect periodic-orbit expansion of En.

The purpose of our paper is twofold: �i� in Sec. IV, we
show that inclusion of ghost orbits yields exact formulas akin
to Eq. �4� in the tunneling regime; �ii� in Sec. V, we show
how to extract ghost orbit information from computed or
measured spectra in the tunneling regime. We call this pro-
cedure ghost orbit spectroscopy. Since, in general, the ampli-
tudes of ghost orbits increase as the particle energy E�V0
approaches the threshold E=V0, we focus here on the
energy-scaling case

V0 = vE . �5�

This potential, which Sec. VI shows can be implemented
experimentally, allows us to stay close to, but below, the
threshold energy V0 for all E. Equation �5� uses scaled spec-
troscopy to our advantage in connection with ghost orbit

spectroscopy. Note that scaled spectroscopy is already an
established experimental technique in atomic physics
�16,18,25� and microwave studies �12–14,26�.

We organize this paper as follows. To enhance accessibil-
ity and readability, Sec. II provides a brief introduction and
illustrates, with a simple model system, that periodic-orbit
theory is not necessarily an approximate theory. As pointed
out above, for many physical and mathematical systems,
periodic-orbit theory is exact; the step-in-the-box potential
�1�, discussed in this paper, provides yet another example. In
fact, Ref. �26� conjectures that an exact periodic-orbit theory
exists for any bounded quantum system. Section II also in-
troduces basic ideas and notation that will be used through-
out this paper. Using the above-barrier case �E	V0� of the
step-in-the-box potential �1� as an illustrative example, Sec.
III introduces symbolic dynamics �3,27� and a step-function
technique for the explicit computation of energy levels.
Since the above-barrier case is already well covered in the
literature �20–22�, Sec. III presents only material essential
for the cohesion of this paper. Section IV extends our meth-
ods into the tunneling regime �E�V0�, where ghost orbits
�16–19,22,23� arise. We impose unitarity �23� to obtain ex-
act, convergent ghost orbit expansions of individual energy
eigenvalues that the nonunitary theory of Ref. �22� does not
achieve �28�. Going far beyond a first announcement of our
results in Ref. �23�, our periodic-orbit expansions presented
here are integral-free. In addition, we discuss their conver-
gence properties in detail. Section V considers the inverse
problem of extracting ghost orbit information from a given
set of energy levels. We show that a relatively modest num-
ber of levels is sufficient �i� to demonstrate the importance of
ghost orbits, i.e., their signatures in the Fourier transform of
the level density, and �ii� to extract their main physical char-
acteristic, i.e., their complex actions. Section VI proposes an
experimental setup that will allow laboratory studies of ghost
orbit spectroscopy. This setup also demonstrates that our
one-dimensional system is more than an academic example;
it has real applications. Section VII discusses our results and
compares our unitary, convergent ghost orbit expansions
with the nonunitary, divergent theory proposed in Ref. �22�.
Section VIII summarizes and concludes the paper.

II. INTRODUCTION TO PERIODIC-ORBIT THEORY

This is a brief introduction to periodic-orbit theory for
readers unfamiliar with the topic. Using the infinite square-
well potential �29,30� as the example, we illustrate the con-
cepts of Newtonian periodic orbits and their classical actions,
and we show how the orbits emerge naturally in the density
of states. That periodic-orbit expansions for the infinite
square well are exact provides us with an example to illus-
trate the new concept of direct, exact periodic-orbit expan-
sions of energy levels.

Consider the classical and quantum mechanics of a par-
ticle of mass m confined inside the infinite square-well po-
tential of width 2a �Fig. 2� given by

V��x� = �0, for �x�� a ,

� , for �x�� a .
�6�

The classical particle bounces periodically between the left-
hand wall at x=−a and the right-hand wall at x=a. Because
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one round trip takes it from x=−a to x=a and back to
x=−a along the motion predicted by Newtonian mechanics,
we call the corresponding trajectory a Newtonian periodic
orbit. The classical action accumulated during one round trip
is

S�E� =  pdx = 4a�2mE , �7�

where p is the momentum of the particle.
The Schrödinger equation for a quantal particle of mass m

moving nonrelativistically in V��x� is

−
�2

2m
���x� + V��x���x� = E��x� , �8�

where � is Planck’s constant. The infinitely steep walls en-
force the boundary conditions

��±a� = 0. �9�

Because of the reflection symmetry of V��x� with respect to
x=0, V��−x�=V��x�, Eq. �8� admits two classes of solutions:
even states, ��+��x�, and odd states, ��−��x�. They satisfy

��±��− x� = ± ��±��x� . �10�

The indices “±” in Eq. �10� carry the parity of the wave
functions: “+” for positive parity �even states� and “−” for
negative parity �odd states�. Within V��x�, i.e., for �x ��a,
the solutions ��±��x� of Eq. �8� are oscillatory. Inserting the
ansatz

��−��x� = sin�kx� , �11�

with k a constant into Eq. �8� yields

k =
�2mE

�
. �12�

We suppress the negative k solution since it yields the same
wave function �up to a sign� and the same energy levels.
Therefore, it is enough to consider k	0.

The boundary conditions �9� demand

sin�ka� = 0. �13�

Equation �13� is known as a spectral equation. As will be-
come apparent in Secs. III and IV, spectral equations such as
Eq. �13� are key to our theory of explicit, periodic-orbit ex-

pansions of individual energy eigenvalues. The solutions

kn
�−� =

n

a
, n = 1,2, . . . �14�

determine the negative-parity spectrum of V��x� according to

En
�−� =

�22n2

2ma2 . �15�

Following similar lines for the positive-parity states, we ob-
tain the spectral equation

cos�ka� = 0 �16�

with solutions

kn
�+� = �n −

1

2
�

a
, n = 1,2, . . . , �17�

and the positive-parity energy spectrum

En
�+� =

�22

2ma2�n −
1

2
�2

, n = 1,2, . . . . �18�

Now knowing En
�±� explicitly, we may compute the density of

states ��E� in V��x�. In practice, of course, it is rare to have
complete knowledge of the spectrum of a given potential in
the form of simple analytical expressions such as Eqs. �15�
and �18�. Therefore, computing ��E� on the basis of a known
spectrum seems backward, since in practice it is usually ��E�
that is either known or can be computed �approximately�
using various techniques, and it is the spectrum we seek to
compute once we have ��E�. But much can be learned by
first constructing ��E� on the basis of a known spectrum, and
then, in a second step, recovering this spectrum on the basis
of a known ��E�. It also demonstrates via a simple example
that our methods are exact.

The density of states of the positive-parity spectrum

��+��E� = 	
n=1

�

��E − En
�+�� �19�

can be brought via Eq. �18� into the form

��+��E� =
ma

�2k
	

n=−�

+�

�� ka


+

1

2
− n� , �20�

where k	0 is defined in Eq. �12�. With the help of the one-
periodic � function,

�1�x� = 	
n=−�

+�

��x − n� = 	

=−�

+�

e2i
x, �21�

we obtain

��+��E� = 	

=−�

+�

�− 1�

2ma2

�S�E�
ei
S�E�/�. �22�

The density of states �22� can be broken up into two parts
corresponding to 
=0 and 
�0

FIG. 2. Newtonian periodic orbit in a square-well potential of
width 2a and infinitely high walls.
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��+��E� = �̄�+��E� + �̃�+��E� , �23�

where

�̄�+��E� =
2ma2

�S�E�
=

a�m

��2E
�24�

corresponds to 
=0, and is called the average density of
states, and

�̃�+��E� = 	

=1

�

�− 1�

a�2m

��E
cos�2a
�2mE/�� �25�

corresponds to 
�0, and is called the fluctuating part of the
density of states.

Formula �22� illustrates the essence of periodic orbit
theory: The density of states, here ��+��E�, is expressed in a
form that contains only classical quantities �here m and
S�E��, geometric input �here the width 2a of the potential�,
and Planck’s quantum of action �. In particular, as shown in
Eq. �22�, the density of states is expressed as a sum over the
product of an amplitude factor ��−1�
2ma2 /�S�E�� and a
phase factor ei
S�E�/� containing multiples 
 of the classical
action S�E�. The index 
 is known as the repetition factor,
since multiplied by S�E�, it corresponds to the total classical
action accumulated on multiple traversals of the primitive
periodic orbit with action S�E�. This orbit is called primitive
because it is the shortest one; it cannot be broken down any
further into repetitions of a shorter periodic orbit. We men-
tion that in more general cases with smooth potentials, an
additional term appears in the periodic-orbit expansion, the
so-called Maslov phase �3�. It is a reflection of yet another,
important classical property of the periodic orbits: their to-
pology.

Our example has only one primitive periodic orbit, the
Newtonian orbit sketched in Fig. 2. More general potentials,
such as the step-in-the-box potential Vs�x� shown in Fig. 1,
have many, and topologically different, primitive periodic
orbits. The orbits P1 , . . . , P6 in Fig. 1 are examples of primi-
tive periodic orbits for Vs�x�; Sec. III shows that many more
exist for Vs�x�. In these cases, the density of states contains
an additional sum over all primitive periodic orbits �see Secs.
III and IV�.

We now approach our main goal, i.e., the computation of
individual energy levels given the density of states

��E� = 	
�=1

�

��E − E�� . �26�

Suppose examination of a spectral equation, e.g., Eq. �13� or
Eq. �16�, of a potential reveals an interval �En

�1� ,En
�2�� in

which only the single energy level En is found. Since the end
points En

�1� and En
�2� delimit an interval in which En, a root of

the spectral equation, can be found, we call �En
�1� ,En

�2�� the
root interval of En, and since En

�1� and En
�2� separate �isolate�

the spectral point En from all the other roots of the spectral
equation, we call En

�1� and En
�2� root separators. Of course, for

a general bounded system without degeneracies, the root

separators are not unique. This introduces a welcome flex-
ibility into the theory.

Integrating over the root interval �En
�1� ,En

�2��, we have

En = �
En

�1�

En
�2�

E��E�dE , �27�

since according to the definition of En
�1� and En

�2� only the �
function ��E−En� of the sum over � functions in Eq. �26�
contributes and “projects” E onto En in Eq. �27�.

Equation �27� is the starting point for obtaining periodic-
orbit expansions of individual energy eigenvalues. We illus-
trate the technique with the help of the positive-parity spec-
trum of V��x�. Suitable root separators for En

�+� are En
�1�

=�2�n−1�22 /2ma2 and En
�2�=�2n22 /2ma2. We then have

En
�+� = �

En
�1�

En
�2�

E��+��E�dE . �28�

Using the periodic-orbit expansion �22� of ��+��E�, we obtain

En
�+� = F�En

�2�� − F�En
�1�� , �29�

where F�E� is the indefinite integral

F�E� =� E��+��E�dE , �30�

given explicitly by

F�E� =
�S�E��3

48�ma2 +
�2

8ma2 	

=1

�

�− 1�
�1



��S�E�

�
�2

−
2


2�sin�
S�E�
�

� +
2


2

S�E�
�

cos�
S�E�
�

�� �31�

with S�E�, the action of the Newtonian periodic orbit, defined
in Eq. �7�. Using Eq. �31� in Eq. �29�, we obtain a periodic-
orbit expansion for the individual energy levels En

�+�. With
Eq. �7�, Eq. �31�, and formula 0.2341 of Ref. �31�, viz.,

	

=1

�

�− 1�
+1 1


2 =
2

12
, �32�

Eq. �29� can be evaluated explicitly to yield Eq. �18�. This
means that Eq. �29� reproduces the correct result for En

�+�.
At this point, we have come full circle. Starting from Eq.

�18� we computed ��+��E�, Eq. �22�, and then used ��+��E� to
compute En

�+� �Eq. �18�� directly in the form of a periodic-
orbit expansion �Eq. �29�� via the “projector equation” �27�.

Our main result is Eq. �29�, the periodic-orbit expansion
of all individual energy levels of the positive-parity spectrum
of V��x� in the form En

�+�= f �+��n�, where the structure of f �+�

is fixed and known. Thus, computation of En
�+� requires noth-

ing more than “plugging” n into the argument of f �+�. Similar
calculations can be performed for the negative-parity case to
yield an explicit periodic-orbit expansion of the negative-
parity energy levels En

�−�= f �−��n� analogous to Eq. �29�.
In summary, we have shown how knowledge of the level

density combined with root separators can be used to obtain
exact periodic-orbit expansions of individual energy levels.
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Illustrating the method with an elementary textbook ex-
ample, the infinite square-well potential V��x�, we see how
the method works generally as soon as ��E� and the root
separators are known.

III. SCALING STEP-IN-THE-BOX POTENTIAL: BRIEF
REVIEW OF THE ABOVE-BARRIER CASE

In Sec. II, we showed how a periodic-orbit theory based
on Newtonian periodic orbits yields exact periodic-orbit ex-
pansions of the density of states and individual energy eigen-
values of a model potential. In general, however, Newtonian
periodic orbits alone do not allow us to obtain exact
periodic-orbit expansions of the density of states ��E� or
individual energy levels En. Orbits not allowed by Newton-
ian mechanics must be included in the periodic-orbit expan-
sions. This section focuses on the case E	V0 of the step-in-
the-box potential �see Fig. 1� and shows how the non-
Newtonian periodic orbits P2 and P3 in Fig. 1 emerge
naturally as essential ingredients for exact periodic-orbit ex-
pansions. To prepare for the scaling, below-barrier case
treated in Secs. IV and V, we focus first on the scaling above-
barrier case V0=vE with v�1 �E	V0� and use it to present
a method for obtaining periodic-orbit expansions which is
based directly on the spectral equation and yields periodic-
orbit expansions via a staircase function with unit step and a
distance between steps of 2.

Section II motivated the need for summing over all primi-
tive periodic orbits in a periodic-orbit expansion of ��E�, or
the energy levels En themselves. Since it turns out that Vs�x�
contains an infinite number of primitive periodic orbits, we
require a scheme to label and enumerate them all. Symbolic
dynamics �3,27� provides this scheme.

For Vs�x�, a simple binary code suffices �32�, which we
construct in the following way. First, as shown in Fig. 1, we
label the left-hand and right-hand walls of Vs�x� with the
symbols L and R, respectively. Any trajectory in Vs�x�, not
necessarily periodic, can now be labeled with the two sym-
bols L and R if the motion is restricted to the four possible
“events”: �i� reflection off L; �ii� reflection off R; �iii� reflec-
tion off the potential step at x=a; �iv� transmission through
the potential step, and free motion between events otherwise.
Any finite history of events can be mapped onto “words” w
of finite lengths over the two binary symbols L and R. The
word LRL, e.g., denotes a trajectory which bounces off L,
transmits through the step, bounces off R, transmits a second
time through the step, bounces off L, proceeds to bounce off
the step, and finally returns to its starting point. Apparently,
we can form 2N words w of length N with the two symbols L
and R. While trajectories represented by the words w still
have their history encoded in the sequence of symbols of w,
in particular what event is the starting event of the trajectory
and what event terminates it, this level of detail is not nec-
essary for periodic orbits. Periodic orbits are coded with the
help of cyclic symbol strings w̃, which can be imagined as
words w arranged in a circle. Obviously, many words w be-
come identical when turned into cyclic symbol strings w̃.
Examples are w1=LRL and w2=RLL. Obviously w̃1= w̃2.
Because we imagine the symbols arranged in a circle like

pearls on a string, we call the set of mutually different cyclic
symbol strings necklaces �33� and denote them by ŵ. For
example, if w̃1=LRL, w̃2=RLL, and w̃3=RRL, then w̃1
= w̃2� w̃3. In general, two necklaces w̃1 and w̃2 are equal if
there exists a rotation of the symbols of w̃2 such that w̃1 and
w̃2 are congruent.

We may now code all periodic orbits shown in Fig. 1 with
the L, R scheme. The Newtonian periodic orbit is coded
LR; the non-Newtonian orbits P2 and P3 are coded R and
L, respectively; the Newtonian orbit P4 is coded L; and the
ghost orbits P5 and P6 are coded LR and R, respectively.

At a fixed energy E, the coding scheme is unique. Each
necklace ŵ corresponds one-to-one to a periodic orbit. At
different energies, however, qualitatively different orbits
�such as P3 and P4, for example� may correspond to the same
necklace ŵ �ŵ=L in our example�. In periodic-orbit theory
this is never a problem, since ��E�, e.g., is evaluated at a
given value of E, for which the naming scheme is unique.

It is possible and useful to define functions f�w� over the

set of words 
w� and functions f̂�ŵ� over the set 
ŵ� of neck-
laces. Excellent examples are the six counting functions
nL�w�, nR�w�, nLL�w�, nRR�w�, nLR�w�, nRL�w� that count
the number of L symbols, R symbols, LL pairs, RR pairs,
LR combinations, and RL combinations, respectively. In
the case of nL and nR, it makes no difference whether they
are applied to words w or necklaces ŵ; we have nL�w�
= n̂L�ŵ� and nR�w�= n̂R�ŵ�. In the case of the other four
counting functions, however, it usually makes a difference
whether they are applied to a word w or a necklace ŵ. We
have, e.g., nLL�LRL�=0, but n̂LL�LRL�=1; nRR�RRR�
=2, but n̂RR�RRR�=3; nLR�RL�=0, but n̂LR�RL�=1;
nRL�LR�=0, but n̂RL�LR�=1. Note, in particular, that
nRR�R�=0, but n̂RR�R�=1; nLL�L�=0, but n̂LL�L�=1.

With the help of the counting functions, we define four
functions that turn out to be useful later

l�w� = nL�w� + nR�w� ,

��w� = nLL�w� + nRR�w� ,

��w� = nLR�w� + nRL�w� ,

��w� = l�w� + nRR�w� . �33�

Their necklace versions l̂�ŵ�, �̂�ŵ�, �̂�ŵ�, and �̂�ŵ� are con-
structed analogously as explained above.

We now turn to the nonrelativistic quantum mechanics of
Vs�x�. In �0,a�, the wave function of a quantum particle of
mass m moving in Vs�x� is given by ��x�=sin�kx�; in �a ,b� it
is ��x�=A sin���x−b��, where A is a constant, k=�2mE /�,
and �=�2m�E−V0� /�=� k with �=�1−v. Continuity of
��x� and its first derivative at x=a yield the spectral equation

sin�ka + �d� = r sin�ka − �d� , �34�

where r= �1−�� / �1+�� and d=b−a. Defining

� =
�d

a
, �35�
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� =
1 − �

1 + �
, �36�

and

� = ka�1 + �� , �37�

we obtain the dimensionless spectral equation

sin��� = r sin���� , �38�

where 0�r�1 and 0���1. It is straightforward to prove
that �38� has only real solutions �n. We arrange the index n in
such a way that �0=0, and �1 is the first positive root of Eq.
�38�. We have �−n=−�n. Because r�1, one and only one root
of Eq. �38� �namely �n� occurs in the root interval

In = ��n −
1

2
�,�n +

1

2
�� . �39�

Thus all roots of Eq. �38� have multiplicity 1 and �n
�1�= �n

−1/2� , �n
�2�= �n+1/2� are the root separators of �n.

Consider the matrix

S��� =�
0 reiu+� teiu+� 0

− eiu+� 0 0 0

0 0 0 − eiu−�

0 teiu−� − reiu−� 0
� ,

�40�

where t=�1−r2, and

u+ =
�1 + ��

2
, u− =

�1 − ��
2

. �41�

We have

det�S − 1� = − 2iei��sin��� − r sin����� . �42�

Therefore, the equation det�S−1�=0 and Eq. �38� have the
same roots. Because the matrix S defined in Eq. �40� is uni-
tary, we may write it as

S��� = U���diag�ei�1���, . . . ,ei�4����U���†, �43�

where U��� is unitary and � j���, j=1, . . . ,4 are real functions
of � �eigenphases of S�. Therefore, we encounter a root of
det�S−1�=0, or equivalently, a root of Eq. �38�, whenever
any of the phases �1��� , . . . ,�4��� is an integer multiple of
2.

It is straightforward to compute the phases analytically.
They are given by

�1��� =
1

2

� − arcsin�r sin������, �2��� = �1��� +  ,

�44�

�3��� =
1

2

� + arcsin�r sin����� + �, �4��� = �3��� + ;

�45�

all four are monotonically increasing functions of �.

We now define the counting function

N��� = 	
n=1

�

��� − �n� �46�

of the positive zeros of Eq. �38�, where

���� = �0, for � � 0,

1/2, for � = 0,

1, for � 	 0

�47�

is Heaviside’s step function. Define the function �see Fig. 3�

�2��� = −
1

2
+
�

2
+

1


	
n=1

�
sin�n��

n

= �m −
1

2
, for � = 2m ,

m , for 2m� �� 2�m + 1� ,

�48�

where m is an integer. This function is a “staircase function.”
It jumps by one unit whenever � crosses a multiple of 2.

With the help of �2, and because all roots of Eq. �38�
have multiplicity 1 �see above�, we can now relate N��� to
the eigenphases of S���

N��� = 	
j=1

4

�2�� j���� = −
1

2
+
�


+

1


	
k=1

4

	
n=1

�
sin�n�k����

n
.

�49�

Because of the unitarity of S���, and using the symbols Im
and Tr to denote the imaginary part and the trace of a matrix,
respectively, we write Eq. �49� in the form

N��� = −
1

2
+
�


+

1


Im Tr 	

n=1

�
1

n
Sn��� . �50�

We obtain the density of states ���� from the staircase func-
tion N��� via

FIG. 3. Staircase function �2���. This function jumps by one
unit whenever its argument � crosses a multiple of 2.
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���� =
dN���

d�
. �51�

Since ���� is now known, we obtain �n in analogy to Eq. �27�
according to �20–22�

�n = �
�n−1/2�

�n+1/2�

�����d� = ��N�����n−1/2�
�n+1/2� − �

�n−1/2�

�n+1/2�

N���d�

= �2n −
1

2
� − �

�n−1/2�

�n+1/2�

N���d� , �52�

where we used N��n+1/2��=n and N��n−1/2��=n−1.
This is an explicit expression for �n, since the right-hand side
of �52� involves only known functions of �. With Eq. �50�,
exchanging integration and summation �which is allowed
here �21��, and using the fact that the trace of odd powers of
S is zero, we obtain

�n = n −
1

2
Im Tr 	

m=1

�
1

m
�

�n−1/2�

�n+1/2�

S2m�r,�;��d� . �53�

An integral-free representation of �n is obtained by relating
the trace of the powers of the S matrix in Eq. �53� to the
periodic orbits, Newtonian and non-Newtonian, in the poten-
tial Vs�x� �see Fig. 1�. This is accomplished by realizing that
the matrix S defined in Eq. �40� has a physical interpretation
as the scattering matrix of Vs�x�. We see this in the following
way. Define four channels of Vs�x� represented by the four
arrows in Fig. 4. Channel number 1 �arrow number 1� corre-
sponds to a particle moving from x=0 to x=a; channel num-
ber 2 �arrow number 2� corresponds to a particle moving in
the opposite direction, from x=a to x=0. Channel number 3
corresponds to a particle moving from x=a to x=b �arrow
number 3�, and channel number 4 corresponds to a particle
moving in the opposite direction from x=b to x=a �arrow
number 4�. The connection between the classical paths and
the powers of the S matrix in Eq. �53� is achieved by realiz-
ing that the channels �arrows� can be interpreted both classi-
cally, as sections of particle trajectories, and quantum me-
chanically, as quantum flux streaming along the channels in
the direction indicated by the arrows. The matrix element
S12, e.g., corresponds to a particle, classical or quantum me-
chanical, traversing channel number 1 in the direction of

arrow number 1 and, having reflected at the step at x=a, just
about to enter channel number 2 at x=a. Therefore, quantum
mechanically, we can construct the amplitude in this channel
by S12=reiu+�, where r is the reflection amplitude and u+� is
the action accumulated by traversing channel 1 on its way to
channel 2. All the other matrix elements of S in Eq. �40� have
a similar physical interpretation. The nth power of S, Sn,
corresponds to a particle moving inside Vs�x� on a path con-
sisting of the four sections �arrows� in Fig. 4 as building
blocks. Let us examine, e.g., the matrix element �S2�11 given
by

�S2�11 = 	
j=1

4

S1jSj1. �54�

The sum in Eq. �54� consists of four terms, S11S11, S12S21,
S13S31, and S14S41. According to Eq. �40�, S11 is zero, because
the tip of the arrow number 1 cannot be continuously con-
nected to its tail; in other words, flux cannot feed continu-
ously from the tip of arrow number 1 back to its tail. S12S21,
however, defines an allowed path since the tip of arrow num-
ber 1 joins smoothly with the tail of arrow number 2. The
flux then traverses arrow number 1 and returns on arrow
number 2, defining a periodic orbit. This way we see by
example that all diagonal elements of Sn correspond to peri-
odic orbits, and that the trace of Sn corresponds to a sum of
periodic orbits. In fact, by writing out a few powers of S
explicitly, we see that

Tr�S2m� = 2 	
w,l�w�=m

�− 1��̂�ŵ�r�̂�ŵ�t�̂�ŵ�e2i��w��, �55�

i.e., the trace of S2m is twice the sum over all 2m binary
words w with fixed length l�w�=m. The “hat” symbol �∧�
turns words into necklaces. The functions �̂�ŵ�, �̂�ŵ�, �̂�ŵ�,
the necklace analogues of the word functions �33�, and the
function ��w�, defined below, have the following physical
interpretation.

Each term in Eq. �55� corresponds to an amplitude factor,

�−1��̂�ŵ�r�̂�ŵ�t�̂�ŵ�, which keeps track of reflections and trans-
missions of a particular orbit coded by w, and a phase factor
e2i��w��, which represents the total action accumulated along
the orbit w. The function �̂�ŵ� counts how many times the
orbit w reflects off the two walls of Vs�x� and how many
times it reflects off the step at x=a, but only if it approaches
the step in channel 4 and gets scattered into channel 3. The
function �̂�ŵ� counts the total number of reflections at x=a
�channel 1 to channel 2 plus channel 4 to channel 3� and

�̂�ŵ� counts the total number of transmissions through the
step at x=a �channel 1 to channel 3 plus channel 4 to channel
2�. The action function ��w� is defined as

��w� = nL�w�u+ + nR�w�u−, �56�

where nL and nR are the counting functions of L and R
symbols, respectively, and u+, u− are defined in Eq. �41�.

Inserting Eq. �55� into Eq. �53� and performing the inte-
gration, we obtain

FIG. 4. Channel assignments inside the step-in-the-box potential
Vs�x�.
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�n = n −
1


	
m=1

�
1

m
	

w,l�w�=m

P�w�Gn���w�� , �57�

where

P�w� = �− 1��̂�ŵ�r�̂�ŵ�t�̂�ŵ� �58�

and

Gn�w� =
1

��w�
sin�2n��w��sin���w�� . �59�

In Eq. �57�, we must sum over all words w of length l�w�
=m. Let us inspect a word w of length m. Such a word can
always be written as

�60�

where wp is the smallest symbol unit contained in w that,
when repeated 
 times, results in w. The word wp is also
called the “primitive root” of w. Let lp be the length of wp,
i.e., lp= l�wp�. Then we have

m = 
 lp. �61�

There are lp words, different from w, but cyclically equiva-
lent to w. We note that both P�w� and Gn�w� are invariant
under cyclic permutations of the symbols of w. Therefore,
using the necklace ŵp as the representative of w and its lp
cyclical equivalents, the sum over the words w in Eq. �57�
can be written as a sum over the necklaces ŵp, supplemented
with proper repetition factors, according to

�n = n −
1


	
ŵp

	

=1

�
1


 lp
lpP�ŵp�
Gn�
��ŵp�� . �62�

From Eq. �62� we obtain the final result for the periodic-orbit
expansion of �n in the form

�n = n −
1


	
ŵp

	

=1

�
1


2 ��− 1��̂�ŵp�r�̂�ŵp�t�̂�ŵp��


�
1

��ŵp�
sin�
��ŵp��sin�2
n��ŵp�� . �63�

We have achieved our aim of deriving an explicit, exact,
integral-free, periodic-orbit expansion of the roots of the
spectral equation �38�. With �n computed, the above-barrier
energy spectrum of Vs�x� is now calculated according to

En =
�2

2m

�n
2

�a + d�1 − v�2
. �64�

IV. BELOW-BARRIER CASE

We now turn to the below-barrier case E�V0, which cor-
responds to v	1. Again we match at x=a the wave function
�I�x�=sin�kx�, valid in 0�x�a and the wave function
�II�x�=A sinh���x−b��, valid in a�x�b, where �

=�2m�V0−E� /�=�k, �=�v−1, to obtain the spectral equa-
tion

tan�ka� = −
1

�
tanh�k� d� , �65�

with, as in Sec. III, d=b−a. The singularity-free version of
Eq. �65� is

� sin�ka�cosh�� kd� + cos�ka�sinh�� kd� = 0. �66�

We give both versions of the spectral equation since Eq. �65�
is better suited for the computation of root separators, while
Eq. �66� occurs naturally in connection with the S-matrix
theory discussed below.

To derive a periodic-orbit solution for the roots of �65�
��66�, respectively�, we need the reflection coefficient in the
case d→�, i.e., the subbarrier reflection coefficient r, for a
step potential with infinitely long plateaus. Figure 5 illus-
trates the situation. In region I �x�0� the wave function is
�I�x�=eikx+re−ikx; in region II it is �II�x�= te−k�x. Continuity
of the wave function and its first derivative at x=0 yield

r =
1 − i�

1 + i�
. �67�

We now compute the reflection coefficient R for the case of
finite d and express it with the help of r. For finite d, we refer
to Fig. 6 and have �I�x�=eikx+Re−ikx, and �II�x�
=T sinh��k�x−d��. Imposing continuity of the wave function
and its first derivative at x=0 gives

FIG. 5. A plane wave eikx incident from the left in region I on a
step of height V0	E is reflected off the step to the left with ampli-
tude r, where �r � =1. The wave tunnels into region II, te−k�x, but is
exponentially attenuated.

FIG. 6. Similar to Fig. 5, with one crucial difference: The pla-
teau of the step potential, extending to +� in Fig. 5, terminates with
an infinitely high wall at x=d. This changes the reflection and trans-
mission coefficients of the wave from r to R and from t to T,
respectively.
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R�k� =
i sinh��kd� + � cosh��kd�
i sinh��kd� − � cosh��kd�

= r
1 − r*e−2�kd

1 − re−2�kd . �68�

Note that R is a function of k, while r is a constant. Define
the dimensionless variable �=ka and note that this � differs
from � defined for the above-barrier case in Sec. III �see Eq.
�37��. With � defined in Eq. �35�, we obtain the dimension-
less spectral equations

tan��� = −
1

�
tanh���� , �69�

or

� sin���cosh���� + cos���sinh���� = 0, �70�

respectively. Equation �68� becomes

R��� =
i tanh���� + �

i tanh���� − �
= r

1 − r*e−2��

1 − re−2�� . �71�

There is another way of deriving the spectral equation in
the case E�V0. Lowering E below V0 turns Eq. �2� into

r =
k − i�

k + i�
=

1 − i�

1 + i�
, �72�

consistent with Eq. �67�. Moreover, for E�V0, the spectral
equation �34� turns into

sin�ka + i�d� = r sin�ka − i�d� , �73�

which is the same as the spectral equation �66�. Here it is
important to notice that i�d in Eq. �73� is the complex action
of a classical trajectory with E�V0, starting at x=a and end-
ing at x=b: The classically forbidden section a�x�b makes
an imaginary contribution i�d to the classical action of this
trajectory. As discussed in the introduction, classical trajec-
tories with complex actions are known as ghost orbits in the
literature �16–19,22,23�. We interpret the action i�d as one
half of the action of the specter P6 in Fig. 1. In the scaled
case, � is the scaled, under-barrier action of a classical tra-
jectory traveling from x=a to x=b, or from x=b to x=a. We
interpret it as one half of the scaled action of the specter P6
in Fig.1.

In analogy with the above-barrier case discussed in Sec.
III, we would like to express the spectral equation �70� in the
form det�S−1�=0, where S is the below-barrier scattering
matrix of Vs�x�. Section III showed that for E	V0 there are
four open channels, which we called channels 1, 2, 3, and 4,
respectively. However, when lowering the energy through
E=V0, channels 3 and 4 close at E=V0, leaving only two
open channels �channels 1 and 2� in the energy regime E
�V0. Thus, for E�V0, the scattering matrix turns into a 2
�2 matrix, given by

S��� = � 0 R���ei�

− ei� 0
� . �74�

Direct calculation shows that

det�S − 1� =
2ei�

sinh���� + i� cosh����

� sin���cosh����

+ cos���sinh����� . �75�

Since the prefactor in Eq. �75� never vanishes, det�S−1�=0
has the same roots as, and is therefore equivalent to, the
spectral equation �70�.

We note that

S2��� = − R���e2i�I , �76�

where I is the 2�2 unit matrix. Therefore,

S2m��� = �− 1�mRm���e2im�I, m = 1,2, . . . . �77�

We now study the structure of the roots of the spectral
equation �69�: These roots are given by the intersections of
the functions tan��� and −tanh���� /� as shown in Fig. 7.
According to Fig. 7, the nth root of Eq. �69� lies in the root
interval

�n −
1

2
�� �n � �n +

1

2
� . �78�

To apply the staircase-function method of Sec. III for the
explicit computation of the roots �n, we need the eigenangles
�1��� and �2��� of the S matrix �74�, which is straightfor-
ward because S is only a 2�2 matrix. From det�S���−�I�
=0, we obtain

�2 = − R���e2i�, �79�

where R��� is defined in Eq. �71�. Defining

���� = arctan� 1

�
tanh����� , �80�

we may write

− R��� = e2i���� �81�

and, therefore,

�1��� = � + ����, �2��� = � +  + ���� . �82�

That the two eigenangles �1��� and �2��� are monotonically
increasing functions of �, together with the equivalence of
det�S−1�=0 and the spectral equation �70�, allows us to use

FIG. 7. Graphical solution of the spectral equation �69� illustrat-
ing the concept of root separators. According to Eq. �69� the roots
of the spectral equation �gray squares� are given by the intersections
of the functions tan��� �solid lines� and −tanh����/� �dashed line�.
Each root �n �gray squares� of the spectral equation �69� is located
between its root separators �n−1/2� and �n+1/2�, respectively.
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the staircase-function approach of Sec. III to compute the
roots �n. With �2 defined in Eq. �48�, we have

N��� = 	
j=1

2

�2�� j���� = −
1

2
+
�


+
����


+
1


	
j=1

2

	
n=1

�
sin�n� j����

n
= −

1

2
+
�


+
����


+
1

2
Im Tr 	

m=1

�
1

m
S2m��� , �83�

where, just as in Sec. III, we made use of the trace of the odd
powers of S��� being zero. Formula �52� remains valid since,
according to Eqs. �39� and �78�, the above-barrier and the
below-barrier cases have the same root separators. We turn it
into the analogue of Eq. �53� by carefully noting that accord-
ing to Eq. �83�, the staircase function in the below-barrier
case contains an extra phase factor ����. Then, we obtain

�n = n −
�n


−

1

2
Im Tr 	

m=1

�
1

m
�

�n−1/2�

�n+1/2�

S2m���d� ,

�84�

where we defined

�n = �
�n−1/2�

�n+1/2�

����d� , �85�

and S��� in Eq. �84� is the 2�2 S matrix defined in Eq. �74�.
With Eq. �77�, we obtain the following explicit result for the
roots of the spectral equation �70�

�n = n −
�n


−

1


Im 	

m=1

�
�− 1�m

m
�

�n−1/2�

�n+1/2�

Rm���e2mi�d� ,

�86�

where R��� is defined in Eq. �71�. We can immediately check
two important limits of Eq. �86�. According to Figs. 1 and 4,
for d→0 the step-in-the-box potential becomes an infinite
square well. Therefore, in this limit, we expect �n=n. For
d=0, we have �=0 according to Eq. �35�. In this case, the
integrals in Eq. �86� can be performed trivially; they all van-
ish. Inspecting Eq. �80� for �=0 shows that �����0, i.e.,
�n=0 for all n. Therefore, �n=n, as expected, which con-
firms the validity of Eq. �86� in the limit d→0.

Our second check concerns the case d→�. In this case,
with �→� according to Eq. �35�, the spectral equation �69�
reduces to tan���=−1/�, with the solution �n=n
−arctan�1/��. Inspecting Eq. �86� when �→�, we see that
again all the integrals in Eq. �86� vanish, but ����
=arctan�1/�� according to Eq. �80�. According to Eq. �85�,
this means that �n= arctan�1/��. All of these results used
in Eq. �86� yield �n=n−arctan�1/��, the expected result in
the case d→�.

So far we have checked the two limits �→0 and �→�,
which check the average behavior of the roots of Eq. �69�
including the phase �n in Eq. �86�. These limits, however, do
not check the S-matrix terms in Eq. �86�. According to Eq.

�86�, these terms are important for ��1/ �2n�, which al-
lows for a large variation in the prefactor of the oscillating
terms under the integral in Eq. �86�, resulting in large con-
tributions from these S-matrix terms.

Therefore, as a test for Eq. �86�, we choose n=1, �
=1/ �2�, and a /b=3/4, which yields �=3/ �2� and v=1
+9/ �42�. In this case, the first root of Eq. �69� is

�1 = 2.475 998 479 3 . . . . �87�

Figure 8�a� shows ��1
�M�−�1� �solid line�, where �1

�M� is the
first root of Eq. �69� computed using the first M terms of Eq.
�86� and performing the integration over � numerically. Fig-
ure 8�a� shows that ��1

�M�−�1 � �1/M2 �dashed line� over
most of the M range shown in Fig. 8�a�. Figure 8�b� shows
��7

�M�−�7� �solid line� as a function of M. We see that an
initial �1/M behavior �dotted line� crosses over to a �1/M2

behavior �dashed line� at M*�1429 �arrow�. The crossover
point M* is determined as the intersection M*=A /B of the
two functions A /M2 �dashed line� and B /M �dotted line�
fitted to ��7

�M�−�7� �solid line�. In a similar way, we extracted
the crossover points M* for n=1, . . . ,6 and n=8,9. Even for
n=1, as shown in Fig. 8�a�, although marginal, a crossover at
M*�5 can be extracted. The inset in Fig. 8�b� shows
M*�n� ,n=1, . . . ,9 �solid squares� obtained graphically ac-
cording to the procedure described above; they scale roughly
exponentially in n.

For fixed � and � �in the present case �=1/ �2� , �
=3/ �2��, the exponential scaling of M* in n can be under-
stood in the following way. We study the sum in Eq. �86�,
computing an estimate for its general term

FIG. 8. The difference ��n
�M�−�n� �solid lines�, for fixed �

=1/ �2�, �=3/ �2�, for n=1 �a� and n=7 �b� as a function of M,
where �n

�M� is computed using the first M terms in the m sum of Eq.
�86�, and �n is the exact solution of the spectral equation �69� for
�=1/ �2� and �=3/ �2�. ��n

�M�−�n� �solid lines� decay according
to �1/M �dotted lines� for 1�M�M*. At M �M* �arrows� the
�1/M behavior �dotted lines� crosses over to a �1/M2 behavior
�dashed lines� which persists for at least up to M =105, and probably
to M→�. The inset of panel �b� shows the crossover points M*

�solid squares� extracted from plots of ��n
�M�−�n� for n=1, . . . ,9. The

solid line in the inset is the theoretical estimate M*�n�=2en /6 �see
text�.
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Jmn =
�− 1�m

m
�

�n−1/2�

�n+1/2�

Rm���e2mi�d� . �88�

According to Eq. �81�, we write it as

Jmn =
1

m
�

�n−1/2�

�n+1/2�

e2mi arctan�tanh����/��+2mi�d� . �89�

For small � and large n, we expand the arctan function in Eq.
�89� to the first order to obtain

Jmn �
�− 1�m

m
�

�n−1/2�

�n+1/2�

e−2mi� ��1+e−2���/�1−e−2����+2mi�d� .

�90�

Expanding the fraction in the exponent of Eq. �90� to first
order in e−2��, we obtain

Jmn �
�− 1�m

m
e−2mi��

�n−1/2�

�n+1/2�

e−4mi�e−2��+2mi�d� . �91�

Substituting �=n+y , − /2�y� /2, and expanding
e−2�� to first order in y, we obtain

Jmn �
1

m2

sin�4m��e−2�n�
1 + 4��e−2�n e−2mi� �1+2e−2�n�. �92�

For small m, the argument of the sine function is small.
Linearizing the sine function in Eq. �92� shows that for small
m the integrals Jmn�1/m. The monotonically rising behav-
ior of the sine function in Eq. �92� changes to an oscillatory
behavior when its argument crosses  /2. This happens at

m* =
1

8��
e2�n. �93�

For m	m*, the integrals Jmn behave like �1/m2 on average.
We now argue, but cannot formally prove, that the quali-

tative change in the m behavior of Jmn reflects itself in a
qualitative change in the behavior of the sum in Eq. �86� as a
function of M, with the crossover between �1/M and
�1/M2 behavior occurring at M*�m*. Thus, according to
Eq. �93�, we predict an exponential scaling of M* in n, which
in our case ��=1/2, �=3/2 fixed� takes the form

M*�n� =
2

6
en. �94�

The solid line in the inset of Fig. 8�b� shows this scaling
function. There is good agreement between the graphically
extracted crossover points M* �full squares in Fig. 8�b�� and
the prediction �94�. Since asymptotically �for large M� all
��n

�M�−�n � �1/M2, we conclude that �i� �n
�M� converges to the

exact value �n, and �ii� the algebra leading us to Eq. �86� is
correct.

We are now going to derive an integral-free representation
of �n based on Newtonian orbits, ghost orbits, and specters.
We start with the phase factor ���� defined in Eq. �80� and
write it as

���� = arctan� 1

�
�1 − e−2��

1 + e−2���� . �95�

We recognize immediately that this phase factor is due to
ghost orbits that travel entirely under the potential barrier in
a�x�b �see Fig. 1�. This is so since the exponential factor
in Eq. �95� can be written as eiSg���, where Sg���=2i�� is the
classical action of an under-barrier specter. Using formula
4.4.28 of Ref. �34�, viz.,

arctan�x� =
i

2
ln� i + x

i − x
� , �96�

we transform Eq. �95� into

���� =
i

2
ln� i� + 1

i� − 1
� +

i

2
ln� 1 − re−2��

1 − r*e−2��� . �97�

Since both arguments of the ln functions in Eq. �97� are
unimodular phase factors, we obtain

���� = arctan� 1

�
� − Im ln�1 − re−2��� . �98�

Using the series expansion of the ln function �see, e.g., Ref.
�31� formula 1.511�, viz.,

ln�1 − x� = − 	

=1

�
1



x
, �99�

we obtain the final result for ���� in the form

���� = arctan� 1

�
� + Im 	


=1

�
1



r
ei
�2i���. �100�

Formula �100� has an immediate and direct interpretation in
terms of periodic orbits. The first term in Eq. �100� is a
constant phase factor, which corresponds to “orbits of zero
length” �3�. The sum in Eq. �100� is over the under-barrier
ghost orbits oscillating 
 times from x=a to x=b and back to
x=a. The primitive ghost with action 2i�� is coded with the
symbol R. It corresponds to the specter P6 �see Fig. 1�. Its

th repetition with action 2
i�� is coded by 
 symbols R,

i.e., R
. Since their actions, appearing in the exponent of Eq.
�100�, are purely imaginary, and since they never emerge
from under the potential barrier, they are specters, too.

The amplitude factor r
 in Eq. �100�, corresponding to the
specter R
, has a straightforward physical interpretation. The
specter R
 bounces 
 times between the step at x=a and the
wall at x=b, picking up a phase factor −1 for each bounce at
the wall, and a phase factor −r for each reflection off the step
at x=a. Altogether, this results in an amplitude factor r
 as
shown in Eq. �100�. Based on Eq. �100�, we can now provide
an integral-free, periodic-orbit expansion for the phase �n in
Eq. �86�. Term-by-term integration of Eq. �100� yields
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�n =  arctan� 1

�
� + Im 	


=1

�
r


�
2e−2n
�sinh�
�� .

�101�

To obtain Eq. �101�, we must exchange the order of integra-
tion and summation, which is allowed in this case since the
sum in Eq. �100� converges absolutely �35�.

We now turn to the sum in Eq. �86�. Expanding Rm��� into
a power series in e−2��,

Rm��� = rm�1 − r*e−2��

1 − re−2�� �m

= 	

=0

�

A

�m�e−2
��, �102�

we see that the terms under the integral in Eq. �86� corre-
spond to the Newtonian orbit Lm with action 2m� �for 
=0�
and all possible ghost orbits with complex actions 2m�
+2i
��, which can be combined from m Newtonian travers-
als �back and forth� between x=0 and x=a, and 

=1,2 , . . . ,� under-barrier traversals �back and forth� be-
tween x=a and x=b. Substituting the series �102� into Eq.
�86� and performing the integrals, we obtain the following
integral-free, periodic-orbit expansion for the roots �n of the
spectral equation �69�

�n = n − arctan� 1

�
� −

1


Im 	


=1

�
r


�
2e−2n
�sinh�
��

−
1


Im 	

m=1

�
1

m
	

=1

�
A


�m�


� − im
e−2n
�sinh�
�� . �103�

There are three different ways of expressing the coefficients
A


�m�. According to their definition �102�, they are given by

A

�m� = rm 1


!

d


dx

��1 − r*x

1 − rx
�m�

x=0
. �104�

The expression �104�, although formally correct, is not very
useful. Using the binomial theorem gives a more useful, ex-
plicit formula

A

�m� =

1

m
�− 1�m+
 	

�=0

min�m,
� � r*

r
���m

�
�� − m


 − �
� . �105�

The most useful representation for the A

�m� coefficients, how-

ever, is their expansion in terms of periodic orbits. We obtain

A

�m� = 	

ŵ
l�ŵ�=m+


ŵ=�ŵp

1

�
��− 1��̂�ŵp�r�̂�ŵp�t�̂�ŵp���. �106�

In Eq. �106�, the sum is over all binary necklaces ŵ of length
m+
, where ŵ can be written as a repetition of � identical,

shorter pieces ŵp. The functions �̂, �̂, and �̂ in Eq. �106� are
the necklace analogues of the word functions �33�.

Equation �103� combined with Eq. �106� is the central
result of our work. It is an advance over Eq. �86� for two
reasons: �i� There is still an integral in Eq. �86�, but the set of
equations �103� and �106� is explicit, i.e., free of all integrals.
�ii� The physics is much more transparent in Eqs. �103� and

�106�. For instance, reflection and transmission coefficients,
r and t, respectively, appear explicitly in Eq. �106�, and all
contributing periodic orbits, including the ghost orbits, are
enumerated explicitly, one by one.

V. EXTRACTING GHOST ORBIT INFORMATION

Up to this point, we have computed energy levels in terms
of periodic orbits. In this section, we invert this procedure to
show that given a set of energy levels 
�n�n=1

N , it is possible to
extract periodic-orbit information from them, in particular
information on the periodic ghost orbits. We define the Fou-
rier transform of the level density ��N����=	n=1

N ���−�n� ac-
cording to

F�N���� = Re �
0+

�max

����e−i��d� = 	
n=1

N

cos���n� , �107�

where �N��max��N+1 and 0+ means that we do not include
the level �0=0 in the Fourier transform �107�. We denote by
F��� the N→� limit of F�N����. According to its definition,
F��� is an even function of �, i.e., F�−��=F���. To illus-
trate the overall structure of F���, we computed F�N=30����
for the case v=1.02 and a /b=3/4. The result, displayed in
Fig. 9, shows that F��� consists of an array of peaks with
spacing  �=2 that grow out of a smooth background. We
explain the peaks as follows. According to Eq. �103�, the
average behavior of �n is

�n � n − arctan� 1

�
� �108�

for large n. Fourier transforming Eq. �108� according to Eq.
�107� results in �Ref. �31� formulas 1.3421 and 1.3422�

FIG. 9. Fourier transform F�N=30����=	n=1
N=30 cos���n� of the first

N=30 roots �n of the spectral equation �69�. It is sharply peaked at
�=0, ±2, ±4, . . .. The smooth background in F�N=30���� is due to
ghost orbits. The rapid oscillations are a finite-sample effect since
N=30 is finite.

BHULLAR, BLÜMEL, AND KOCH PHYSICAL REVIEW E 73, 016211 �2006�

016211-12



F�N���� = �−
1

2
+

sin��N +
1

2
���

2 sin��
2
� �cos�� arctan� 1

�
��

+ � sin��N + 1

2
���sin�N�

2
�

sin��
2
� �

�sin�� arctan� 1

�
�� . �109�

This function is sharply peaked at �=0, ±2, ±4, . . ., which
explains the sharp peaks in Fig. 9, including their location.
Since for our choice of parameters cos�2 arctan�1/����0
�cos�4 arctan�1/���	0�, Eq. �109� also explains why
F�N=30���� is sharply negative �positive� at �� ±2 ��
� ±4�. The term � sin�� arctan�1/��� in Eq. �109� explains
the slight asymmetry in F�N=30���� at �� ±2, ±4. For large
N and in the vicinity of �=0, we have

F��� → ���� −
1

2
. �110�

To investigate further the structure of F���, we use Eq.
�77� to write Eq. �83� as

N��� = −
1

2
+
�


+
����


+
1


Im 	

m=1

�
�− 1�m

m
Rm���e2im�.

�111�

We obtain the level density ���� from � by differentiation,

���� =
dN���

d�
=

1


+
�����


+
1


Im 	

m=1

�

�− 1�m�Rm−1���R����

+ 2iRm����e2im�. �112�

Using Eq. �112� in Eq. �107�, we obtain a physical interpre-
tation of the peaks at �= ±2, ±4, . . . as due to the oscillating
terms in the sum of Eq. �112�, since, because of the imagi-
nary part in Eq. �112�, both e2im� and e−2im� terms appear and
contribute to F��� peaks located at �= ±2m. These terms are
produced by orbits that oscillate �back and forth� m times
between x=0 and x=a, and an arbitrary number of times
between x=a and x=b.

The peak at �=0 is special. According to Eq. �112�, this
peak is produced by the nonoscillating terms 1/+����� /,
where the former is responsible for the �-function part of the
structures in F��� at �=0, and the latter is responsible for
the background, assuming that the background features pro-
duced by the m=1, . . . ,� terms in Eq. �112� have died away
at �=0. Figure 9 shows that this is a good approximation.
Realizing that according to Eq. �100�, ���� contains contri-
butions from the specters R
, 
=1,2 , . . . ,�, we will focus
on F��� in the vicinity of �=0 to extract ghost orbit infor-
mation from the Fourier transform F���, and by implication,
from the energy levels �n. In particular, we want to extract

the constant �, which determines the classical actions of the
specters.

Near �=0, the factor 1 / in the level density �112� pro-
duces the function ����−1/2 in F���. The term −1/2 pre-
vents us from counting the unphysical level �0=0, which
does not correspond to a physical state; the term −1/2 also
appears in Eqs. �109� and �110�. Since no ghost information
is contained in the term ����−1/2, we subtract it from F���
and study the regularized Fourier transform

f��� = F��� − ���� +
1

2
�113�

in the vicinity of �=0. According to Eq. �112�, f��� is given
explicitly by

f��� =
1


�

0+

�max

�����cos����d� . �114�

Since the integrand in Eq. �114� is a smooth function, we
may replace 0+→0. Moreover, for large �max, we may re-
place �max by � to obtain

f��� = g���/�� �115�

with the scaling function

g��q� =
�


�

0

� cos�qz�
sinh2�z� + �2 cosh2�z�

dz . �116�

The full line in Fig. 10 shows it for v=1.02 ��=�2/10�. Its
full width at half maximum �FWHM� is denoted by !�.

Since 	n=1
� cos��n�=����−1/2 in the vicinity of �=0,

we define the finite-N approximation, f �N����, of the regular-
ized Fourier transform �113� according to

f �N���� = 	
n=1

N

�cos���n� − cos��n��u��n� , �117�

where u��n� is a weight function that suppresses the Gibbs
phenomenon �14,36�. Since q=� /� and f���=g��q�, we ex-
pect that f �N���=q�� is close to the scaling function g��q�.
The dashed line in Fig. 10 shows f �N���=q�� for the case

FIG. 10. Full line: Scaling function g��q� used for extracting the
reduced action of specters from numerical or experimental spectral
data. Dashed line: Regularized Fourier transform f �N���=q�� for
N=30.
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v=1.02 ��=�2/10� for N=30 and u���=cos2�� / �2�N��. As
expected, f �30� is close to g�, especially in the wings �for
large �q��, but shows oscillations that are most pronounced in
the vicinity of q=0. We checked that the oscillations are due
to the finite size of the sample of levels �here N=30�, and
that the oscillations are pushed to an ever smaller interval
around q=0 for N→�.

Figure 10 shows that, the oscillations notwithstanding, the
excellent agreement between f �N���=q�� and g��q� for large
�q� allows us to extract the width !� from f �N� obtained from
N numerically computed, or experimentally measured, en-
ergy levels.

The procedure is the following. For given �, which is
determined by the model system or by the experimental
setup �see Sec. VI�, �i� plot the scaling function g��q�; �ii�
determine the FWHM !� of g��q�; �iii� plot f �N����; �iv�
determine the FWHM !N of f �N����; and finally �v� compute
��num,expt� according to

��num,expt� =
!N

!�
. �118�

In Sec. VI, we propose an experiment which should allow �i�
experimental verification of ghost orbits in the tunneling re-
gime and �ii� measurement of their properties using the
above scheme for determining ��expt�.

VI. EXPERIMENT

This section proposes an experimental implementation of
the scaling step-in-the-box potential that allows realization of
the three energy regimes E	V0 �above barrier�, E=V0 �criti-
cal�, and E�V0 �tunneling�. Figure 11 shows a setup con-
sisting of a quasi-one-dimensional �q1D�, dielectric-loaded
microwave cavity of width W, height H, and total length b.
Both H and W are assumed to be small compared with the
cavity’s length b. Region I of the cavity �0�x�a� is filled
with a low-loss, dielectric substance of relative permittivity
�e=" /"0	1, where " �"0� is the permittivity of the substance
�vacuum�. We assume that the magnetic permeability � of
the substance differs negligibly from �0, the magnetic per-
meability of the vacuum. This ensures that the electromag-
netic boundary conditions are the same as the ones of the
scaling Schrödinger equation. For calculations below, we as-
sume that vacuum ��e=1, �=�0� fills region II �a�x�b� of
the cavity, although all computations below are affected little
if air ��e�1, ���0� fills region II. We also assume that the
cavity height H is small compared with �min /2, where �min is

the smallest wavelength occurring in the cavity for any of the
operating frequencies used in the experiment. Since the rela-
tive dielectric constant �e	1 in region I, the smallest wave-
lengths occur there and we require

H�
c

�max
��e

, �119�

where c is the speed of light in vacuum and �max is the
largest microwave frequency used in the experiment. If the
criterion �119� is fulfilled, only transverse magnetic �TM�
modes �37�, TMnm0, occur in the cavity, where n ,m are the
mode indices in the x and y directions, respectively, and “0”

indicates that the electric field E� inside the cavity is constant

in the z direction. The electric field E� of a TMnm0 mode

points into the z direction, E� =Ezẑ, and in addition, Ez depends
only on the two spatial dimensions x and y, i.e., Ez
=Ez�x ,y�.

To implement the one-dimensional scaling potential Vs�x�
specified in Eqs. �1� and �5�, we focus on the TMn10 modes
of the cavity shown in Fig. 11. In this case, the electric field
component Ez has the form

Ez
�n��x,y� = An�n�x�sin�y/W� , �120�

where An is a constant. Since Ez
�n��x ,y� satisfies the Helm-

holtz equation �37�

� +
��2

c2 �Ez
�n��x,y� = 0, �121�

where �=�e in region I and �=1 in region II, we have

�n��x� − � 
W
�2

�n�x� +
��2

c2 �n�x� = 0. �122�

To ensure that only TMn10 modes are excited in the cavity,
the width W of the cavity must be between one half and one
wavelength of the microwave field for all operating condi-
tions in region I. This condition requires

c

���e

�W�
2c

���e

. �123�

Our aim now is to turn Eq. �122� into an energy-scaling
Schrödinger equation such that its potential corresponds to
the energy-scaling step-in-the-box potential �1� with V0=vE
and v a constant. We accomplish this by assuming that the
width W of the cavity is coupled to the cavity frequency via

W =
s

�
, �124�

where s is constant. The W scaling �124� together with the
estimate �123� yields the following condition for s

c
��e

� s�
2c
��e

. �125�

We now define

FIG. 11. Setup of the proposed quasi-one-dimensional micro-
wave experiment for extracting ghost orbit information from experi-
mental resonance spectra. Coupling the width W of the cavity to the
microwave frequency � allows scaled spectra to be taken in the
tunneling regime.
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E =
�2

c2 ��e − �c

s
�2� , �126�

which turns Eq. �122� into the energy-scaling Schrödinger
equation

− �n��x� + V�En;x��n�x� = En�n�x� , �127�

where

V�E;x� = �0, in region I,

vE , in region II
�128�

and

v =
��e − 1�

�e − �c/s�2 �129�

is the scaling constant of the potential. Judicious adjustment
of s allows realization of all three energy regimes, E	V0
�v�1� , E=V0 �v=1�, and E�V0 �v	1�.

We focus now on the tunneling case E�V0. Section V
showed that the reduced action � of the specters can be ex-
tracted reliably from 30 energy levels. In the microwave lan-
guage of this section, this means that the cavity setup should
be able to provide 30 TMn10 microwave resonances �n with-
out excessive demands on the required microwave frequen-
cies or cavity dimensions. To show that this is possible, we
give next the dimensions for an actual experiment.

A reasonable choice for �e is �e=2, approximately the
value for many liquid and solid substances �38�. Moreover,
successful experiments with dielectric-loaded microwave
cavities were already performed with paraffin wax, �e�2.2
�12,13� and Teflon, �e�2.08 �14�. To remain close to the
example of Sec. V, we choose v=1.02. With �e=2 and v
=1.02 chosen, we may now compute the constant s that re-
lates the microwave frequency � to the cavity’s width W.
Solving Eq. �129� gives, to two-digit accuracy,

s � 0.99c . �130�

Note that s in Eq. �130� satisfies the condition �125�. A crude
approximation of the energy eigenvalues En of Eq. �127� is
the infinite-box limit

En = �n

a
�2

. �131�

Equation �126� gives the corresponding resonance frequen-
cies 
n=�n /2, where


n = n
0.505c

a
. �132�

If we choose a=1 m, which is approximately a cavity di-
mension used in a recent, successful microwave experiment
�12,13�, we obtain


1 � 150 MHz, 
30 � 4.54 GHz, �133�

convenient values for microwave equipment �12,13�. It re-
mains to compute the width W of the cavity for 
1 and 
30.
With s of Eq. �130�, we obtain, to two-digit accuracy,

W1 = 99 cm, W30 = 3.3 cm. �134�

These are convenient dimensions for experimental work.
Our proposed q1D microwave setup resembles quasi-two-

dimensional �q2D�, flat microwave cavities already used suc-
cessfully for quantum chaos studies �24�. Quasi-2D micro-
wave cavities were first used by Stöckmann and Stein �36�,
and Sridhar and collaborators �39,40� for the study of spec-
tral statistics and wave functions �3�. Later, dielectric-loaded
q2D cavities were used for the investigation of non-
Newtonian orbits �14� and an experimental test �12,13� of a
predicted �11� universal correction to the Weyl formula �3� of
ray-splitting systems �8–15�. The use of q2D cavities is a
mature technology, making the experiments proposed in this
section eminently feasible.

When we cast the Helmholtz equation of a dielectric-
loaded cavity into the form of an equivalent Schrödinger
equation, the potential V is automatically scaling in E��2

for q2D cavities �11–14�; for our proposed q1D cavity it is
not. This explains why we must introduce a cavity with vari-
able width W according to Eq. �124�. Although a cavity with
a movable boundary has been used already to measure para-
metric correlation of energy levels in a Sinai ray-splitting
billiard �41�, the variable width we propose introduces the
complication of keeping the width of a dielectric insert equal
to the cavity width W. Though this presents some experimen-
tal challenges, we propose two methods to facilitate experi-
mental implementation of a dielectric with variable width.

The most straightforward way would use a nonconduct-
ing, dielectric liquid. Standing the q1D cavity on end solves
the problem of keeping the liquid confined to region I of the
cavity; the dimension of any meniscus will be much smaller
than the wavelength and, therefore, of no consequence. Use
of liquid dielectrics has an additional advantage: mixtures of
liquids allow �e to be adjusted continuously, in case this
turns out to be necessary.

A second method would be to slice a solid dielectric of
length a, height H, and width �1 m into, say, M =1000, or
more, thin slices of width w�1 mm, or less. Adding slices
to, or removing slices from a stack of width W corresponds
to discretizing the width W of the dielectric in steps of w
according to Wj = jw , j=1, . . . ,M. Taking a complete micro-
wave spectrum �n, n=1, . . . ,N for each width Wj of the
stack allows construction of a two-dimensional map of �n
versus Wj. Interpolating this map, we would obtain the
smooth functions �n�W�, n=1, . . . ,N. Intersecting �n�W�
with the smooth curve �=s /W yields the scaled resonances
�n

�s�, n=1, . . . ,N �N�30�, needed for extracting the ghost
orbit information according to the procedure outlined in Sec.
V.

VII. DISCUSSION

As the energy is lowered, a classical orbit that for E
	V0 propagates freely in region II �a�x�b� of the step-in-
the-box potential �see Fig. 1� becomes a ghost orbit for E
�V0 if any part of the orbit has an overlap with region II. In
this picture, the below-barrier case does not seem so different
from the above-barrier case, and one might be tempted to
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develop a tunneling theory for the step-in-the-box potential
by simply allowing the actions of the classical orbits to be-
come complex, otherwise keeping all the formulas developed
in Sec. III unmodified. We call this procedure the complexi-
fication approach. Complexification is intuitively appealing
since it would allow us to develop a unified theory of both
the above-barrier regime and the tunneling regime. Da-
baghian and Jensen �22� recently used complexification to
compute energy levels for a nonscaling step-in-the-box po-
tential. However, as discussed below, there are problems
with this approach.

For E�V0 complexification starts with the S matrix �40�.
For E�V0, the matrix S��� turns into the 4�4 complex,
nonunitary matrix

Ŝ��� = �
0 r̂eiû+� t̂eiû+� 0

− eiû+� 0 0 0

0 0 0 − eiû−�

0 t̂eiû−� − r̂eiû−� 0
� ,

�135�

where

r̂ =
1 − i�

1 + i�
, t̂2 = 1 − r̂2,

û+ =
�1 + �̂�

2
, û− =

�1 − �̂�
2

,

�̂ =
1 − �̂

1 + �̂
, �̂ =

i� d

a
, � = �v − 1. �136�

Indeed, det�Ŝ���−1�=0 yields the correct spectral equation
�66�. The matrix �135� is now used directly in Eq. �50� to
obtain the staircase function in the below-barrier case ac-
cording to

N̂��� = −
1

2
+
�


+

1

2
Im Tr 	

m=1

�
1

m
Ŝ2m��� , �137�

where we used the vanishing of the trace of the odd powers

of Ŝ���. The staircase function N̂��� obtained by using the
first ten terms in the sum in Eq. �137� is shown in Fig. 12.

We see that N̂��� is highly oscillatory in certain � intervals.
Including more than ten terms in the sum �137� shows that

N̂��� actually diverges to infinity in the � intervals in which

N̂��� shows oscillations in Fig. 12. Therefore, the complexi-

fied N̂��� is an unsatisfactory starting point for the computa-
tion of energy levels �n in the below-barrier regime. For
comparison, Fig. 12 also shows N��� computed according to
Eq. �111�, which is based on the unitary theory derived in
this paper �dashed line in Fig. 12�, again using the first ten
terms in the sum. Now N��� is much closer to a staircase
function.

The numerically observed convergence of N��� is not sur-
prising, since the algebra leading to Eq. �111� is exact. The
expression for N̂���, on the other hand, is not derived, but
obtained by unjustified, analytic continuation without rigor-
ous derivation. There is no a priori reason for why this pro-
cedure should work. Indeed, as we saw above, it fails.

The reason for the divergences of N̂��� is the occurrence

of eigenvalues � of Ŝ��� with �� �	1 in certain � intervals.

Use of an S matrix with �� �	1 in Eq. �137� leads to an N̂
that diverges exponentially in M, where M is the number of
terms included in the sum over m in Eq. �137�. We conclude
that due to the occurrence of S-matrix eigenvalues � with
�� �	1, the direct complexification attempted in Ref. �22�
yields divergent results while our unitary 2�2 theory yields
exact, convergent periodic-orbit expansions of the energy ei-
genvalues of the step-in-the-box potential. The tunneling
theory we presented in this paper completes the task of the
analytical solution of the step-in-the-box potential in all en-
ergy regimes.

One might argue that the observed, divergent behavior of

N̂��� is due to our use of a scaling theory. However, direct
investigation of the nonscaling case treated in Ref. �22� re-
vealed similar divergences �28�, again due to S-matrix eigen-
values whose modulus exceeds 1.

Still, when analyzed term-by-term, the complexified, non-
unitary 4�4 S matrix yields the correct amplitudes for each
periodic �ghost� orbit contributing to the staircase �50�. In
this light, the divergence of the 4�4 theory is puzzling until
one realizes that, although the 2�2 and the 4�4 theories,
respectively, include the same orbits with the same ampli-
tudes, the two theories imply a different order of summation.
While the 4�4 theory sums the orbits according to their
number of encounters with the step at x=a �which is correct
for E	V0, but incorrect for E�V0�, the 2�2 theory implies
that for each bounce off �transmission through� the left-hand
side of the step, all trajectories with an arbitrary number of
bounces off the right-hand side have to be summed first.
Expressed symbolically, if 
ŵ� are necklaces consisting of m
symbols L and n symbols R, then one first has to sum over

FIG. 12. Staircase functions N̂��� �solid line� computed with the
4�4 complexification approach and N��� �dashed line� computed
with the 2�2 unitary S-matrix approach. The large oscillations in

N̂��� become worse as more periodic orbits are included. Thus

N̂��� diverges.
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n, and then sum over m. Thus, the step-in-the-box potential
provides an illustrative case of Riemann’s reordering theo-
rem �28� according to which, as is the case here, a nontrivial
reordering of the terms of a conditionally convergent sum
can lead to different �including divergent� results.

Though it is one-dimensional, the step-in-the-box poten-
tial is not trivial. We showed that all periodic orbits contrib-
uting to the periodic-orbit expansions can be labeled one-to-
one with the help of binary necklaces. However, since there
are �2m /m binary necklaces of length m �33� �for m prime�,
the number of periodic orbits contributing to our periodic-
orbit expansions grows exponentially, and we emphasize that
in the tunneling regime, the majority in this exponential pro-
liferation are ghost orbits. Thus, in the tunneling regime,
periodic ghost orbits outnumber Newtonian orbits.

An exponentially growing number of periodic orbits is a
hallmark of quantum chaotic systems. Is our one-
dimensional step-in-the-box potential quantum chaotic? We
argue no, since the step-in-the-box potential is not classically
chaotic. The reason is the following: While satisfying a nec-
essary condition for classical chaos, i.e., the exponential pro-
liferation of periodic orbits, it does not satisfy the more im-
portant, sufficient condition: a positive Liapunov exponent.
In fact, since the step-in-the-box potential is conservative
and one-dimensional, its Liapunov exponent is zero �3�.

However, the step-in-the-box potential mimics a classi-
cally chaotic system with a positive Liapunov exponent in
the following way. A quantum particle approaching the step
has to make a choice: to reflect or to transmit. The corre-
sponding classical ray dynamics are probabilistic �10�. Thus,
the resulting particle trajectories may look complicated,
mimicking a chaotic trajectory. But since this “chaos” is gen-
erated by true randomness, not the deterministic randomness
of dynamics with a positive Liapunov exponent, it is not
appropriate to call the step-in-the-box potential quantum cha-
otic. We prefer, instead, to call it quantum stochastic �21�.

Although our paper focuses on the case of a single step in
a box with infinitely high walls, it is possible to generalize
the theory to piecewise constant potentials, and potentials
consisting of arrays of � functions. The spectral equation for
these problems is of the form

sin�� + �0� = 	
j=1

K

Cj sin�� j� + � j� , �138�

where �0, Cj, � j, and � j are constants, and K is finite if the
number of steps �� functions� is finite. Without tunneling the
constants are real. If in addition

	
j=1

K

�Cj�� 1, �139�

the theory developed in Sec. III can be applied and yields
explicit periodic-orbit expansions for the roots �n of the spec-
tral equation �138� �20–22�. In the presence of tunneling
some, or all, of the � j in Eq. �138� become complex. But the
theory developed in Secs. III and IV stays applicable as long
as

	
j=1

K

�Cj sin�� j� + � j��� 1, for all � . �140�

Even if Eq. �139� is violated, there already exists the method
presented in Ref. �21� to obtain, at least in principle, explicit
periodic-orbit expansions for the solutions �n of Eq. �138�.
We will be able to solve all one-dimensional quantum prob-
lems consisting of piecewise constant potentials and � func-
tions if we can find a method to deal with cases in which the
condition �140� is violated. Such a method does not yet exist,
and this provides the last road block on the way to solving all
one-dimensional quantum problems consisting of piecewise
constant potentials and �-function potentials. Nevertheless,
the set of one-dimensional problems that can already be
solved via explicit periodic-orbit expansions is large: In ad-
dition to the finite square well �42� and the tunneling prob-
lem solved here, it contains at least all 1D piecewise constant
potentials without tunneling and all �-function arrays where
the � strengths are positive.

Section IV proposed an experiment for the extraction of
ghost orbit information from measured spectra in the tunnel-
ing regime �ghost orbit spectroscopy�. The question arises
“Why do an experiment, if theory is exact, and any experi-
ment can at best approximate theory?” Reasonable answers
can be found in a paper entitled with this question �43�. We
add the following.

Theory can be “perfect,” viz., exactly 1D or 2D, or . . ..
Real experiments have imperfections, and careful measure-
ments can occasionally isolate unanticipated consequences
of these imperfections. An example is the surprising sensi-
tivity to “lid warping” of the experiment reported in Refs.
�12,13�. A tiny amount of lid warping introduced “3D-ness”
into an otherwise 2D experiment, and it establishes the need
for developing a fully three-dimensional �3D� vector theory
of ray splitting in electromagnetic systems. This 3D case is
not equivalent to the scalar theory used for quantal ray split-
ting, so such a theory will be new and different. Real experi-
ments, therefore, can provide the stimulus for new theory.

VIII. SUMMARY AND CONCLUSIONS

Tunneling is most important below, but close to the
threshold E=V0. Thus ghost orbit spectroscopy is best ac-
complished with an energy-scaling system where, because of
V0=vE with v a constant, one can remain close to, but below,
the tunneling threshold E=V0 for all E. For this reason, our
focus in this paper is on a simple model, the energy-scaling,
step-in-the-box potential, which illustrates the importance of
ghost orbits in systems with tunneling.

Our rigorous derivations show that inclusion of ghost or-
bits provides exact, convergent periodic-orbit expansions of
energy eigenvalues in the tunneling regime. We find that our
theory, based on a unitary 2�2 scattering matrix, converges
and yields the correct spectral eigenvalues in the tunneling
regime, whereas a recently published theory �22�, based on a
nonunitary 4�4 matrix, diverges, and yields incorrect en-
ergy eigenvalues in the tunneling regime �28�. The transition
from the nonunitary 4�4 theory to the unitary 2�2 theory
amounts to a consistent summation of ghost orbits in the two
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closed channels of the step-in-the-box potential.
We develop a procedure that allows us to extract ghost

orbit information from computed or measured spectra �ghost
orbit spectroscopy�, and we propose an experiment that
implements the scaling, step-in-the-box potential. It will al-
low measurement of scaled microwave spectra in the tunnel-
ing regime. Although it has novel features, such as a
frequency-coupled width and a dielectric region with vari-
able width, our proposed experiment is feasible. Measuring
on the order of 30 scaled TMn10 microwave resonances will
provide a clear signal in the �regularized� Fourier transform
of the density of resonances to �i� uncover the signature of
periodic ghost orbits in the microwave spectra and �ii� mea-
sure their �complex� actions.

Finally, we point out that our theory amounts to an exact
resummation of Feynman’s path integral �44�. According to
Feynman, we have to sum over all possible paths in the
potential to obtain exact results for the spectral eigenvalues.
While this is certainly correct, we show in this paper that the
subset of Feynman paths consisting of Newtonian orbits and
non-Newtonian ghost orbits is sufficient for obtaining exact
results. All the “extra” Feynman paths sum to zero.
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